

MaxPure™ T7 RNA Polymerase

Product Information

Product Name	Catalog-SKU	Size
MaxPure™ T7 RNA Polymerase	T7P-EE1MP-A	20 KU
	T7P-EE1MP-B	100 KU
	T7P-EE1MP-C	200 KU

Product Description

MaxPure[™] T7 RNA Polymerase is an engineered T7 RNA polymerase. By mutating critical amino acids in the wild-type sequence, the MaxPure[™] T7 RNA polymerase can efficiently reduce the generation of dsRNA byproducts. The MaxPure[™] T7 RNA polymerase uses single or double-strand DNAs harboring T7 promoter as templates to synthesize complementary RNAs in the presence of NTPs.

Product Specification

Component	T7P-EE1MP-A	T7P-EE1MP-B	T7P-EE1MP-C
	(20 kU)	(100 kU)	(200 kU)
T7 RNA Polymerase V2.0 (200 U/μl)	T7P-EE1MP-A1	T7P-EE1MP-B1	T7P-EE1MP-C1
	(100 μl)	(500 µl)	(1 ml)
5×Transcription Buffer 1(for <3000 nt)	T7P-EE1MP-A2	T7P-EE1MP-B2	T7P-EE1MP-C2
	(1.5 ml)	(7.5 ml)	(15 ml)
5×Transcription Buffer 2(for >3000 nt)	T7P-EE1MP-A3	T7P-EE1MP-B3	T7P-EE1MP-C3
	(1.5 ml)	(7.5 ml)	(15 ml)

Source E.coli

Storage Buffer 50 mM Tris-HCl, 100 mM NaCl, 2mM DTT, 1 mM EDTA, 50% Glycerol, 0.1% Triton X-100, pH 7.9

Enzyme Activity Unit Definition The amount of enzyme that will incorporate 1 nmol of ATP into acid-precipitable material in 1 hour at 37°C.

Transportation/Storage Ship on dry ice. Store at -20 ± 5°C. Avoid repeated freeze-thaw cycles

Application

RNA In Vitro transcription(IVT) Capped mRNA synthesis

Protocol

IVT

(1) Prepare the reaction mix at room temperature:

Component	Volume
RNase-free Water	Το 20 μΙ
5×Transcription Buffer 1 or 2	4 μΙ
CTP/GTP/ATP/UTP or N1-Me-Pseudo UTP (100 mM each)	1.5 μl each
Murine RNase Inhibitor(120 U/μl)	0.5 μΙ
Pyrophosphatase, Inorganic(0.1 U/μl)	1 μΙ
DNA	To 1 μg
T7 RNA Polymerase V2.0(200 U/μl)	0.5 μΙ

Note: 5×Transcription Buffer 1 is suitable for sequence length <3000 nt with higher yieldBuffer 2 is used for synthesizing mRNAs >3000 nt for better product integrity. Please choose the better buffer option based on actual applications.

- (2) Incubate at 37°C for 1-2 hours (If the transcript length is ≤100 nt, extend the reaction time to 4-8 hours) ₀
- (3) Use 2 U DNase I to remove the DNA template. Incubate at 37°C for 15 min.

Note: The reaction product can be very sticky. It is recommended to use DNase I to dilute the reaction mixture.

Co-transcription IVT with Capping analog

(1) Prepare the reaction mix at room temperature:

Component	Volume
RNase-free Water	Το 20 μΙ
5×Transcription Buffer 1 or 2	4 μΙ
CTP/GTP/ATP/ UTP or N1-Me-Pseudo UTP(100 mM each)	1.5 μl each
CAP1-Analog(100 mM)	1.2 μΙ
Murine RNase Inhibitor(120 $U/\mu I$)	0.5 μΙ
Pyrophosphatase, Inorganic(0.1 U/μl)	1 μΙ
DNA	To 1 μg
T7 RNA Polymerase V2.0(200 U/μl)	0.8 μΙ

Note: 5×Transcription Buffer 1 is suitable for sequence length <3000 nt with higher yieldBuffer 2 is used for synthesizing mRNAs >3000 nt for better product integrity. Please choose the better buffer option based on actual applications.

- (2) Incubate at 37°C for 1-2 hours (If the transcript length is ≤100 nt, extend the reaction time to 4-8 hours) ₀
- (3) Use 2 U DNase I to remove the DNA template. Incubate at 37°C for 15 min.

Note: The reaction product can be viscous. DNase I is recommended to dilute the reaction mixture.

Assay Data

The MaxPure™ T7 RNA Polymerase significantly reduced the amount of dsRNA byproducts.

Fig. The result shows that MaxPure[™] T7 RNA Polymerase can effectively reduce the level of dsRNA without affecting the quantity and quality of mRNA products.

Cautions

- (1) To avoid the interference of residual protein and ions, the linearized plasmids need to be purified before IVT
- (2) DNA templated needs to be cut as blunt or 5' stick end for higher transcription efficiency in certain specific regions.
- (3) For research use only. Not for other purposes.